Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields

نویسندگان

  • P. Yu
  • M. Han
چکیده

In this paper, the existence of 12 small limit cycles is proved for cubic order Z2-equivariant vector fields, which bifurcate from fine focus points. This is a new result in the study of the second part of the 16th Hilbert problem. The system under consideration has a saddle point, or a node, or a focus point (including center) at the origin, and two weak focus points which are symmetric about the origin. It has been shown that the system can exhibit 10 and 12 small limit cycles for some special cases. Further studies are given in this paper to consider all possible cases, and prove that such a Z2equivariant vector field can have maximal 12 small limit cycles. Fourteen or sixteen small limit cycles, as expected before, are not possible. 2004 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twelve Limit Cycles in a Cubic Order Planar System with Z2-symmetry

In this paper, we report the existence of twelve small limit cycles in a planar system with 3rd-degree polynomial functions. The system has Z2symmetry, with a saddle point, or a node, or a focus point at the origin, and two focus points which are symmetric about the origin. It is shown that such a Z2-equivariant vector field can have twelve small limit cycles. Fourteen or sixteen small limit cy...

متن کامل

Bifurcation of Limit Cycles in Cubic Integrable Z2-Equivariant Planar Vector Fields

In this paper, we study bifurcation of limit cycles in cubic planar integrable, non-Hamiltonian systems. The systems are assumed to be Z2-equivariant with two symmetric centers. Particular attention is given to bifurcation of limit cycles in the neighborhood of the two centers under cubic perturbations. Such integrable systems can be classified as 11 cases. It is shown that different cases have...

متن کامل

An Improved Lower Bound on the Number of Limit Cycles Bifurcating from a quintic Hamiltonian Planar Vector Field under quintic Perturbation

The limit cycle bifurcations of a Z2 equivariant quintic planar Hamiltonian vector field under Z2 equivariant quintic perturbation is studied. We prove that the given system can have at least 27 limit cycles. This is an improved lower bound on the possible number of limit cycles that can bifurcate from a quintic planar Hamiltonian system under quintic perturbation.

متن کامل

An Improved Lower Bound on the Number of Limit Cycles Bifurcating from a Hamiltonian Planar Vector Field of Degree 7

The limit cycle bifurcations of a Z2 equivariant planar Hamiltonian vector field of degree 7 under Z2 equivariant degree 7 perturbation is studied. We prove that the given system can have at least 53 limit cycles. This is an improved lower bound for the weak formulation of Hilbert’s 16th problem for degree 7, i.e., on the possible number of limit cycles that can bifurcate from a degree 7 planar...

متن کامل

Analysis on limit cycles of Zq - equivariant polynomial vector fields with degree 3 or 4 ✩

This paper presents a study on the limit cycles of Zq -equivariant polynomial vector fields with degree 3 or 4. Previous studies have shown that when q = 2, cubic-order systems can have 12 small amplitude limit cycles. In this paper, particular attention is focused on the cases of q 3. It is shown that for cubicorder systems, when q = 3 there exist 3 small limit cycles and 1 big limit cycle; wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004